Bacterial inactivation by a singlet oxygen bubbler: identifying factors controlling the toxicity of (1)O2 bubbles.

نویسندگان

  • Dorota Bartusik
  • David Aebisher
  • Alan M Lyons
  • Alexander Greer
چکیده

A microphotoreactor device was developed to generate bubbles (1.4 mm diameter, 90 μL) containing singlet oxygen at levels toxic to bacteria and fungus. As singlet oxygen decays rapidly to triplet oxygen, the bubbles leave behind no waste or byproducts other than O(2). From a comparative study in deaerated, air saturated, and oxygenated solutions, it was reasoned that the singlet oxygen bubbles inactivate Escherichia coli and Aspergillus fumigatus, mainly by an oxygen gradient inside and outside of the bubble such that singlet oxygen is solvated and diffuses through the aqueous solution until it reacts with the target organism. Thus, singlet oxygen bubble toxicity was inversely proportional to the amount of dissolved oxygen in solution. In a second mechanism, singlet oxygen interacts directly with E. coli that accumulate at the gas-liquid interface although this mechanism operates at a rate approximately 10 times slower. Due to encapsulation in the gaseous core of the bubble and a 0.98 ms lifetime, the bubbles can traverse relatively long 0.39 mm distances carrying (1)O(2) far into the solution; by comparison the diffusion distance of (1)O(2) fully solvated in H(2)O is much shorter (~150 nm). Bubbles that reached the outer air-water interface contained no (1)O(2). The mechanism by which (1)O(2) deactivated organisms was explored through the addition of detergent molecules and Ca(2+) ions. Results indicate that the preferential accumulation of E. coli at the air-water interface of the bubble leads to enhanced toxicity of bubbles containing (1)O(2). The singlet oxygen device offers intriguing possibilities for creating new types of disinfection strategies based on photodynamic ((1)O(2)) bubble carriers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergism between Airborne Singlet Oxygen and a Trisubstituted Olefin Sulfonate for the Inactivation of Bacteria

The reactivity of a trisubstituted alkene surfactant (8-methylnon-7-ene-1 sulfonate, 1) to airborne singlet oxygen in a solution containing E. coli was examined. Surfactant 1 was prepared by a Strecker-type reaction of 9-bromo-2-methylnon-2-ene with sodium sulfite. Submicellar concentrations of 1 were used that reacted with singlet oxygen by an "ene" reaction to yield two hydroperoxides (7-hydr...

متن کامل

Photodynamic inactivation of Escherichia coli with cationic ammonium Zn(II) phthalocyanines.

The aim of this work was the development of a family of novel water soluble Zinc(II) phthalocyanines (Pc) for the photodynamic inactivation of Gram-negative bacteria. Pc derivatives 1a, 2a and 3a containing trimethylammonium groups with varied number and nature of the groups at peripheral positions were synthesized by cyclotetramerization of dimethyl amino substituted phthalonitriles in the pre...

متن کامل

Contrasting Effects of Singlet Oxygen and Hydrogen Peroxide on Bacterial Community Composition in a Humic Lake

Light excitation of humic matter generates reactive oxygen species (ROS) in surface waters of aquatic ecosystems. Abundant ROS generated in humic matter rich lakes include singlet oxygen ((1)O2) and hydrogen peroxide (H2O2). Because these ROS differ in half-life time and toxicity, we compared their effects on microbial activity ((14)C-Leucine incorporation) and bacterial community composition (...

متن کامل

Inactivation of Gram-Negative Bacteria by Low-Pressure RF Remote Plasma Excited in N2-O2 Mixture and SF6 Gases

The role of low-pressure RF plasma in the inactivation of Escherichia coli O157, Klebsiella pneumoniae, Proteus mirabilis, and Enterobacter sakazakii using N2-O2 and SF6 gases was assessed. 1×109 colony-forming units (CFUs) of each bacterial isolate were placed on three polymer foils. The effects of pressure, power, distance from the source, and exposure time to plasma gases were optimized. The...

متن کامل

Singlet Oxygen during Cycling of the Aprotic Sodium–O2 Battery

Aprotic sodium-O2 batteries require the reversible formation/dissolution of sodium superoxide (NaO2 ) on cycling. Poor cycle life has been associated with parasitic chemistry caused by the reactivity of electrolyte and electrode with NaO2 , a strong nucleophile and base. Its reactivity can, however, not consistently explain the side reactions and irreversibility. Herein we show that singlet oxy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 46 21  شماره 

صفحات  -

تاریخ انتشار 2012